- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Furley, Jace (2)
-
Araujo_Rodriguez, Gustavo A (1)
-
Barbosa, Andre R (1)
-
Berman, Jeffrey W. (1)
-
Brown, Nathan C (1)
-
Daniel Dolan, J. (1)
-
Hasani, Hamed (1)
-
Ho, Tu X (1)
-
Kontra, Steven (1)
-
McDonnell, Eric (1)
-
Orozco, Gustavo F (1)
-
Pei, Shiling (1)
-
Ryan, Keri (1)
-
Simpson, Barbara G (1)
-
Sinha, Arijit (1)
-
Uarac, Patricio (1)
-
Wichman, Sarah (1)
-
Zargar, Seyed Hossein (1)
-
Zimmerman, Reid B. (1)
-
van de Lindt, John W. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Design and cradle-to-grave life cycle assessment of a full-scale six-story shake-table test buildingThis paper describes the lateral force resisting system (LFRS) design in a full-scale six-story shake-table test building and presents a comparative cradle-to-grave life-cycle assessment of alternative LFRSs. The test building features the reuse of material from a ten-story shake-table structure comprised of engineered mass timber (MT) products. These include MT floors (cross-, glue-, nail-, and dowel-laminated timber [CLT], [GLT], [NLT], [DLT]); MT posttensioned rocking walls (CLT and mass ply panels [MPP]); and a gravity system consisting of laminated-veneer lumber (LVL) beams and columns. Shake-table testing will benchmark innovative, low-damage design solutions for the LFRSs. To supplement this test, the environmental impact of a MT LFRS is determined relative to design alternatives that use conventional materials. The Athena Impact Estimator for Buildings was used to perform a comparative, cradle-to-grave life-cycle assessment (LCA) of the prototype MT LFRS with respect to an alternative, functionally equivalent reinforced concrete (RC) shear wall design. The LCA results showed reduced environmental impacts across some impact metrics, with a significant reduction in Global Warming Potential for the MT LFRS when accounting for biogenic carbon.more » « less
-
Furley, Jace; van de Lindt, John W.; Pei, Shiling; Wichman, Sarah; Hasani, Hamed; Berman, Jeffrey W.; Ryan, Keri; Daniel Dolan, J.; Zimmerman, Reid B.; McDonnell, Eric (, Journal of Structural Engineering)
An official website of the United States government
